Abstract for Leon Horsten’s talk

We might well believe that our physical universe is finite; but mathematics appears to posit infinite entities, such as the collection of the natural numbers. This raises a fundamental question in the philosophy of mathematics: To what extent and in which sense do mathematical infinities really exist? 
This question can be broken up in the following sub-questions:

  1. Do potentially infinite collections exist?
  2. Do actually infinite collections exist?
  3. Do the actually infinite collections themselves form a potentially infinite collection of infinities of different sizes?
  4. Is there a maximally large actual infinity?
I will argue that it is rational to answer ‘yes’ to each of these questions.
Advertisements